
Eur. Phys. J. D 4, 353–364 (1998) THE EUROPEAN
PHYSICAL JOURNAL D
c©

EDP Sciences
Springer-Verlag 1998

On charged mesoscopic metallic bubbles?
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Abstract. We investigate the existence of stable charged metallic bubbles using the shell correction method.
We find that for a given mesoscopic system of n atoms of a given metal and q � n (positive) elementary
charges, a metallic bubble turns out to have a lower total energy than a compact spherical cluster, whenever
the charge number q is larger than a critical charge number qc. For a magic number (n−q) of free electrons,
the spherical metallic bubble may become stable against fission.

PACS. 36.20.Kd Electronic structure and spectra – 31.10.+z Theory of electronic structure, electronic
transitions, and chemical binding – 21.90.+f Other topics in nuclear structure – 21.60.Cs Shell model

1 Introduction

Neutral and charged metal clusters consisting of a few 100
to a few 1000 atoms possibly containing a limited num-
ber (≤ 10) of positive or negative surplus charges received
considerable scientific interest since 1984. At that time,
when studying the formation of tiny alkali clusters out
of metal vapor, an enhanced production of clusters with
certain atomic numbers (n = 8, 20, 40, 58, 92, etc.) was
observed [1,2] and was correlated with the appearance of
shell closures for the motion of the free electrons i.e. the
conduction (valence) electrons in a spherically symmetric
average potential for the itinerant electrons. A free elec-
tron feels an average potential which is produced by the
background of positive ions, on the one hand, and by the
other free electrons, on the other.

The most prominent peaks in the mass yield were
shown to be due to shell closures in a spherically symmet-
ric potential [3–8], whereas tinier details of the abundance
curve were successfully related to secondary shell effects in
axially symmetric deformed [9–11] and non-axially sym-
metric deformed [12] potentials.

The calculations are usually performed using the
Strutinsky shell correction method [13] or the more in-
volved self-consistent field approach [14,15].

A large amount of beautiful experimental work [16,17]
has been performed since the discovery in 1984. The com-
parison between the experimental and theoretical work
(see for instance Ref. [10]) is in general satisfactory. The
greatest part of the work has hitherto been devoted to un-
charged clusters. Experiments on charged metallic clusters
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were performed by Bréchignac et al. for Li+qn (n = number
of atoms, q = number of elementary charge units) in ref-
erence [18] and for Sb+q

n in reference [19]. It was found
that in most cases singly charged clusters are stable, i.e.
their dissociation is endothermic. Clusters with a positive
charge q > 1 are observed if the number n of constituent
atoms is larger than a critical number nqb which depends
on the system considered. Decay by fission and by evapo-
ration of neutral or charged fragments compete with each
other, the decay by fission being delayed with respect to
the decay by evaporation.

Theoretical studies of the decay were published by
Garcias et al. [20] using a semi-empirical model for the
fission of multiply charged metal clusters and by Gross
et al. [21].

In all the theoretical studies of mesoscopic metallic
clusters it was assumed that the ground state of the cluster
corresponds either to a compact spherical or to a compact
deformed shape.

As we show in this paper, for large enough charge q,
the state of lowest energy of a charged metallic cluster may
correspond to a spherical bubble. Within the liquid drop
approximation, the spherical bubble solutions turn out to
be unstable versus fission. This has been shown in nuclear
physics quite some time ago [22]. In a recent work [23],
we found that spherical nuclear bubbles may be stabilized
by shell effects. In this paper, we show that the same is
true for charged metal clusters if the number of valence
electrons corresponds to a closed shell.

Recently, the experimental group at the MPI of
Stuttgart [24] succeeded in producing fullerenes C60 cov-
ered by a layer of N Cs-atoms with N ≤ 500. They
also calculated [25] the electronic shell structure using
a local approximation to the density-functional theory
and discussed the measured abundances of metal-coated
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fullerenes C60Cs(N) in terms of the magic numbers corre-
sponding to the electronic shell closures in the metal layer.
In the case of metal-coated fullerenes, the fullerene stabi-
lizes the metal layer against deformation. One could imag-
ine that, in the near future, metal layers could be produced
on top of compact spherical (or deformed) mesoscopic ag-
gregates of some insulating material. In this way, the elec-
tronic shell effects in the metal layer could be studied as
a function of the geometry of the supporting material and
of the number of metal atoms.

In our paper, we want to show that for large enough
net charge and for magic numbers of free electrons, metal-
lic bubbles may exist and may be stable against fission
without the presence of a stabilizing fullerene skeleton.

In Section 2, we define the theoretical model and in
Section 3 we present the results we obtained. Section 4
contains a short summary and a discussion of open ques-
tions.

2 Theoretical model

For mesoscopic metallic clusters containing from 100 to
more than 1000 atoms, the distribution of the positively
charged ions can be approximately described by a homo-
geneously smeared-out density which in the simplest case
is given by a step function. For a bubble with inner radius
R2 and outer radius R1, the density of positive ions is thus
given by

ρion(r) =
◦
ρion θ0(r −R2) θ0(R1 − r), (2.1)

θ0(x) =

{
1 for x > 0

0 for x < 0
.

The constant bulk density
◦
ρion> 0 is usually given in

terms of the radius
◦
rs of a sphere which contains 1 atom

on the average

◦
rs =

[
3

4π
◦
ρion

]1/3

. (2.2)

For a given number n of atoms, the volume of the bubble
layer has to be equal to the one of a compact spherical
cluster of radius R0

4π

3
(R3

1 −R
3
2)
◦
ρion=

4π

3
R3

0

◦
ρion= n. (2.3)

Consequently, the shape of the spherical bubble is deter-
mined by only one free parameter. We choose it to be the
ratio

f := R3
2/R

3
1 (2.4)

between the volume of the inner hole to the volume of the
entire bubble or to be the dimensionless inner radius v2

v2 :=
R2

R0
(2.4’)

of the bubble.

The conduction electrons move independently in an
average potential V (r) which represents the mean in-
teraction of a given electron with all the other elec-
trons and with the positive background charge ρion(r). In
the Hartree-Fock approximation the single particle states
ϕν(r) of the electrons1 and the corresponding single par-
ticle energies εν are obtained as the selfconsistent solution
of the coupled equations[
−
~2

2m
4+V̂ (r)

]
ϕν(r) = ενϕν(r), (2.5)

V̂ (r)ϕν(r) = [Vion(r)+V̂e(r)]ϕν(r), (2.6)

Vion(r) = −

∫
dr′

ρion(r′)

|r−r′|
, (2.7)

V̂e(r)ϕν(r) =
∑
κ6=ν

nκ

∫
d3r′ϕ†κ(r′)

e2
0

|r−r′|

× [ϕκ(r′)ϕν(r) − ϕν(r′)ϕκ(r)] .

(2.8)

In (2.8), e0 is the elementary charge and nκ is the occu-
pation number of the single particle state ϕκ. For temper-
ature T = 0, nκ is given by

nκ = 1 for εκ ≤ εF ;

nκ = 0 for εκ > εF , (2.9)

where εF is the Fermi energy. We assume that the tem-
perature is zero.

The Hartree-Fock potential (2.8) is seen to be state-
dependent mainly due to the exchange term. Usually, the
exchange term is replaced by a local density approxima-
tion [3,26]. If we neglect the exchange term altogether and
suppress the exclusion of the state ϕκ = ϕν in the remain-
ing Hartree potential, we obtain

V̂e(r)ϕν(r) =

∫
d3r′

ρHe (r′)e0

|r− r′|
ϕν(r), (2.10)

ρHe (r′) =
∑
κ

nκ e0ϕ
†
κ(r′)ϕκ(r′). (2.11)

The solution of the remaining set of selfconsistent Hartree
equations (Eqs. (2.5) with (2.6, 2.7, 2.10, 2.11)) is still
a considerable technical problem. It has been carried
through for instance in reference [3].

A great simplification is obtained if the selfconsistent
average potential (2.6) is replaced by a phenomenolog-
ical ansatz. Most of the shell structure calculations for
compact metal clusters have been performed on the ba-
sis of simple phenomenological potentials, in particular
the Nilsson potential [6,9], the Saxon-Woods potential
[7,11], and the “wine-bottle” potential [7]. It can indeed
be seen from the results of reference [3] that for atom num-
bers n ≥ 40 the selfonsistently calculated potential V (r)
resembles a Saxon-Woods potential and roughly even to

1 We leave away an explicit notation of the spin degrees be-
cause spin-dependent interactions are neglected.
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a square well. We, therefore, felt justified to represent the
average potential V (r) for the case of a bubble cluster by
an infinite square well with the boundaries given by the
distribution of the positive ions

V (r) =

{
−V0 forR2 < r < R1

+∞ otherwise
. (2.12)

This simple choice of the shell model potential has the
great advantage that the eigenfunctions of the Schrödinger
equation (2.5) are linear combinations of spherical Bessel-
and Neumann functions and the eigenenergies εν are easily
obtained from the boundary conditions at r = R1,2 [23].
Furthermore, the single particle energies of the infinite
square well exhibit a scaling property: they depend on the
number on the number n of atoms as εν = εν

[
n−2/3

]
.

Consequently, using the energy unit
[
n−2/3

]
eV, the level

scheme is valid for all sizes of the system (see Fig. 3).
The well depth V0 in (2.12) is of the order of 0.5 Ry

(1 Ry = 13.6 eV). Its value is not relevant for our results
because the shell correction energy (see Eq. (2.16)) turns
out to be independent of the constant V0.

We now have to determine the total energy Etot of the
metal cluster as a function of the variable f (see Eq. (2.4)).
Given the fact that the ion density ρion(r) can be consid-
ered to be constant inside the matter distribution (see
(2.1)), we may write the energy of the system as a sum of
the energy ELD of a “liquid drop” and a “shell correction
energy” Eshell following Strutinsky [13]

Etot = ELD +Eshell. (2.13)

The liquid drop energy can be written as a sum of a (neg-
ative) term proportional to the volume V of the system
and a (positive) term proportional to the surface S. We
note that the coefficients τ and σ in the expression for the
LD-energy contain the effects of the ions and of the free
electrons. The electronic contribution to these parameters
can be obtained in the Thomas-Fermi (TF) approxima-
tion. We use empirical values for τ and σ as obtained for
macroscopic systems. They thus represent the sum of the
ionic and electronic contributions.

Since we consider (positively) charged clusters, we
have to add the electrostatic energy ECb of the system

ELD = −τV + σS +ECb (2.14)

which turns out to be a much bigger term than in a neutral
cluster.

Some authors [10] include a term proportional to the
average curvature of the surface which is the 3rd term in
the expansion of the energy-density functional of a lepto-
dermous system in terms of n−1/3. In the case of a bub-
ble shape, the curvature terms arising from the inner and
outer surface have opposite signs beside the fact that their
absolute value is much smaller than the corresponding sur-
face term. We omit the curvature term thereby following
reference [21]. Consideration of the curvature term would
favour spherical bubbles as compared to compact spheres.

The “macroscopic” electrostatic energy ECb is given as
a function of smooth density distributions of the positive
and negative charge by

ECb =
1

2

∫
d3r

∫
d3r′

[ρe(r)− ρion(r)][ρe(r
′)− ρion(r′)]

|r− r′|
(2.15)

and the shell-correction energy Eshell as a function of the
single-particle energies εκ by

Eshell =
∑
κ

εκ(nκ − n̄κ), (2.16)

where the occupation probabilities nκ were defined in
(2.9), whereas the quantities n̄κ represent smooth occupa-
tion probabilities in a cluster in which the shell structure
is washed out using the Strutinsky prescription [13].

In our simple phenomenological model, we represent
the distribution of the positive surplus charge [ρion(r) −
ρe(r)] by a simple ansatz: from classical electrodynamics
we know that the surplus charge ought to be localized
at the outer surface of the metallic bubble. We, there-
fore, assume the total (positive) surplus charge qe0 to be
distributed in a thin layer of thickness ε along the outer
surface

[ρion(r)− ρe(r)] = δρ θ0(r − (R1 − ε)) θ0(R1 − r),
(2.17)

where

δρ =
3qe0

4π[R3
1 − (R1 − ε)3]

·

Calculating the Coulomb energy (2.15) for this distribu-
tion as a function of the small quantity η1 = ε/R1, we
obtain

ECb =
(4πδρ)2R5

1

3

{1

5
[1− (1− η1)5]

−
1

2
(1− η1)3(2η1 − η

2
1)
}
,

or

ECb =
q2e2

0

2R1

[
1− 5

3η1 + η2
1 −

1
3η

3
1

][
1− 2η1 + 5

3η
2
1 −

2
3η

3
1 + 1

9η
4
1

] · (2.18)

Up to terms of the order η2
1 this can be written

ECb =
q2e2

0

2R1

[
1 +

η1

3
+Θ(η3

1)
]
. (2.19)

The term of order (ε/R1)0 in (2.19) represents the
Coulomb energy in the limit that the surplus charge is lo-
cated in an infinitely thin layer at the outer surface. One
sees from (2.19) that in 1st order the Coulomb energy in-
creases if the surplus charge is distributed homogeneously
in a layer of finite thickness ε � R1. Consequently, we
used the Coulomb energy in zeroth order of ε/R1 in our
calculations.
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The total energy of the spherical metallic bubble has
thus the form

Etot = −τ
4π

3
(R3

1−R
3
2)+σ4π(R2

1+R2
2)+

q2e2
0

2R1
+Eshell(f).

(2.20)

Subtracting from this expression the energy of a compact
spherical cluster of the same charge qe0 and the same vol-
ume we obtain

∆E(f ; q) := ∆ELD(f ; q) +∆Eshell(f ;n− q), (2.21)

where

∆ELD(f ; q) = 4πσ
(
R2

1 +R2
2 −R

2
0

)
+
q2e2

0

2

(
1

R1
−

1

R0

)
(2.21’)

and

∆Eshell(f ;n− q) = Eshell(f ;n− q)−Eshell(0;n− q).
(2.21”)

We note that the single particle potential (2.12) becomes
a simple central square-well in the limit R2 → 0 (i.e.
f → 0). Thus the shell correction energy Eshell(f = 0)
is obtained by substituting the eigenvalues εκ(f = 0) in
a simple central well with infinite wall at r = R0. The
occupation probabilities have to be chosen in each case
according to Strutinsky’s prescription.

The 1st term and 2nd term of (2.21’) are simple func-
tions of the parameter f due to the relations

R1 = R0

(
1

1− f

)1/3

, (2.22)

R2 = R0

(
f

1− f

)1/3

. (2.22’)

The radius R0 of the compact spherical cluster is related
to the number of n of atoms by

R0 =
◦
rs n

1/3 (2.23)

with the radius parameter given in (2.2).

The surface tension σ and the radius
◦
rs of the Wigner-

Seitz cell are thus the only parameters which specify a
given metal in our model.

The difference ∆ELD(f ; q) between the LD-energies of
the compact cluster and the bubble (Eq. (2.21’)) is seen
to consist of a positive term describing the increase of the
surface energy and a negative term which represents the
reduction of the repulsive Coulomb energy. As far as the
“macroscopic” part of the energy is concerned, a prefer-
ence for the bubble geometry may only occur through the
reduction of the Coulomb energy which increases with the
surplus charge q of the metal cluster. For a given metal
and a given “size” n of the cluster there will thus be a crit-
ical value qc of the charge at which the (spherical) bubble
becomes the configuration of lower energy. It will depend

on the type of the metal (i.e. on the value of the surface

tension σ and the radius parameter
◦
rs) whether the clus-

ter is still stable versus fission or emission of atoms at this
value of the charge.

The difference ∆Eshell of the shell correction terms can
be positive or negative. If the number (n − q) of valence
electrons happens to be a magic number for the bubble
geometry, and not for the compact spherical form, ∆Eshell
will be a negative number and thus favour the formation
of a bubble a.v.v.

The question whether, for given charge, the bubble has
a lower energy than the compact sphere, depends sensi-
tively on the value of the surface constant σ and the radius

parameter
◦
rs. More precisely, it depends on the “fissility”

parameter which is defined to be the ratio of the Coulomb
energy ECb and twice the surface energy ES . The factor 2
is inserted in order to retain the definition used in nuclear
physics:

X =
ECb(f)

2ES(f)
=

q2e2
0

16πσR1(R2
1 +R2

2)
= X0

(
1− f

1 + f2/3

)
,

(2.24)

with X0, the fissility parameter of a compact sphere, being
defined by

X0 =
ECb(f = 0)

2ES(f = 0)
=

q2e2
0

16πσ
◦
r

3

s n
· (2.25)

The difference ∆ELD between the energy of the spherical
bubble and of the compact spherical cluster (see (2.21’))
measured in units of 2ES(f = 0) is given as a function

of the ratio f = (R2/R1)3 or of the dimensionless inner
radius v2 = R2/R0 by the functions

F : =
∆ELD(f ; q)

2ES(f = 0)

=
1

2(1− f)2/3

[
1 + f2/3 − (1− f)2/3

]
−X0

[
1− (1− f)1/3

]
(2.26)

and

F =
∆ELD(v2; q)

2ES(v2 = 0)

=
1

2

[
(1+v3

2)2/3+v2
2−1

]
−X0

[
1−(1 + v3

2)−1/3
]
,

(2.26’)

resp. The 1st terms on the r.h.s. of the equations (2.26,
2.26’) are positive and the 2nd terms are negative. Clearly,
for large enough X0, the function F becomes negative,
i.e. the bubble shape corresponds to a lower energy. The
stationarity conditions

∂F

∂f
= 0 (2.27)



K. Pomorski and K. Dietrich: On charged mesoscopic metallic bubbles 357

and

∂F

∂v2
= 0 (2.27’)

resp., in any case exhibit the “trivial” solution f = v2 = 0.
This means that the compact spherical aggregate always
corresponds to a stationary value of the energy. Additional
“non-trivial” physical solutions exist if the stationarity
condition

1 + f1/3 −X0f
1/3(1− f) = 0 (2.28)

or

1 +
v2

(1 + v3
2)1/3

−X0
v2

(1 + v3
2)4/3

= 0 (2.28’)

has real roots in the range 0 < f < 1 or v2 > 0, resp. It
is easily seen that such solutions exist only if the fissility
parameter X0 > 3.379. We note that in the case of nuclei,
which exhibit a homogeneous charge distribution, the cor-
responding non-trivial solutions occur for X0 > 2.2 (see
Ref. [23]). The function F (v2) and the solution X0(v2) of
equation (2.28’) will be shown and discussed in Section 3.

Let us now turn to the important question of how the
total energy depends on the deformation: it can be easily
shown that the LD-energy of a bubble decreases as a func-
tion of deformation because the decrease of the repulsive
electrostatic energy turns out to be greater than the in-
crease of the surface energy. A spherical bubble may, how-
ever, be stabilized against deformation by shell effects. If
the (n− q) valence electrons of the charged metal bubble
correspond to a closed shell configuration in the spher-
ically symmetric potential (2.12), the shell energy yields
an additional binding of a couple of eV. As one deforms the
bubble the absolute value of this negative shell energy de-
creases as a function of deformation. In this way a barrier
against fission is produced. The calculation of the total en-
ergy of the bubble as a function of the deformation implies
that we determine the eigenvalues in a deformed bubble
potential. This is a difficult task if we were to tackle it
in full generality. There is, however, a family of deformed
shapes which can be transformed into a spherical shape
by a scaling transformation. For this “scaling model”, it
is relatively simple to calculate the eigenvalues:

Assume that the outer (S1) and inner (S2) surface of
the deformed bubble are concentric spheroids with the
half-axes a1(2) and c1(2)

S1(2) :
x2 + y2

a2
1(2)

+
z2

c21(2)

= 1 (2.29)

enclosing the constant volume
4π

3
(R3

1 −R
3
2)

R3
0 = R3

1 −R
3
2 = a2

1 c1 − a
2
2c2. (2.30)

An infinite square well with the boundaries (2.29)

V̂ (x, y, z) = −V0 η0(x), (2.31)

where

η0(x)=

{
1 for x ∈ volume Ω enclosed by S1 and S2

−∞ otherwise

transforms into a simple spherically symmetric potential
of the type (2.12) which depends on the scaled variable

ξ = λx; η = λy; ζ = µz (2.32)

or the corresponding polar variables ρ, ϑ, ϕ

ξ = ρ sinϑ cosϕ; η = ρ sinϑ sinϕ; ξ = ρ cosϑ.
(2.32’)

The 2 scaling parameters λ, µ are related to each other by
the constraint (2.30) which takes the form

λ2µ = 1. (2.33)

Thus they can be expressed by a single deformation pa-
rameter. Using the deformation parameter δ introduced by
Nilsson in reference [27] the scaling parameters are given
as a function of δ by

λ =

(
1 + 2

3δ

1− 4
3δ

)1
6

µ =

(
1− 4

3δ

1 + 2
3δ

)1
3

. (2.34)

In the scaled variables, the Schrödinger equation takes the
form

(Ĥ0 + Ĥ1)ϕν = εν ϕν . (2.35)

The Hamiltonian Ĥ0 is spherically symmetric in the ξ, η, ζ
coordinates

Ĥ0 = −
~2

2Mδ
∆ξηζ + V (ρ), (2.36)

where ∆ξηζ is the Laplacian operator in ξ, η, ζ space and

Mδ = M
(

1 +
2

3
δ
)2

3
(

1−
4

3
δ
)1

3
. (2.37)

The scaled square well potential is now spherical

V (ρ) =

{
−V0 for R2 < ρ < R1

+∞ otherwise
. (2.38)

The term Ĥ1 in (2.35) represents the deformation depen-
dent part of the Hamiltonian

Ĥ1 =
2

3
δ
~2

2Mδ

(
2
∂2

∂ζ2
−

∂2

∂ξ2
−

∂2

∂η2

)
. (2.39)

For determining the stability of a spherical bubble with
respect to elongation, we only need to consider small de-
formations δ. Consequently, we may treat Ĥ1 as a pertur-
bation. This means that the single-particle energy εν can
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Fig. 1. Dimensionless energy difference F (see Eq. (2.26’)) as
a function of the dimensionless inner radius v2 = R2/R0 of the
bubble for different values of the fissility parameter X0 (see
Eq. (2.25)). We also show the solution X0(v2) of the station-
arity condition (2.28’) by the dashed curve with X0 plotted on
the vertical axis (see scale on the right-hand side of the figure).

be approximately obtained as a function of the eigenener-

gies
◦
εν and eigenfunctions

◦
ϕν of the Hamiltonian Ĥ0:

εν ≈
◦
εν +〈

◦
ϕν |Ĥ1|

◦
ϕν〉. (2.40)

For larger deformations, one has to diagonalize Ĥ1 in the

basis of the s.p. states
◦
ϕν . In all the results shown in Sec-

tion 3, the eigenvalues εν were determined by diagonaliza-

tion of Ĥ1 in a sufficiently large subspace of s.p. states
◦
ϕν .

The matrix-elements of Ĥ1 can be easily evaluated if
we make use of the following operator equation which can
be derived in a straightforward way:

2
∂2

∂ζ2
−
∂2

ξ2
−
∂2

η2
=

1

8

[
∆ξηζ ,

[
∆ξηζ , 2ρ

2P2(cosϑ)
]]

=
1

8

(
2Mδ

~

)2

[Ĥ0, [Ĥ0, 2ρ
2P2(cosϑ)]]

+
Mδ

~2
(3ζ2 − ρ2)

1

ρ

∂V

∂ρ
· (2.41)

The relation (2.41) holds for any choice of a spherically
symmetric potential V (ρ). In the case of the infinite square
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Fig. 2. Same plot as Figure 1 but with larger scale on the
vertical axis. Notice that for fissility parameters 3.379 ≤ X0 ≤
3.72 the bubble solution corresponds to a higher energy than
the compact sphere and for X0 ≥ 3.72 to a lower one.

well (2.38), the derivative
∂V

∂ρ
is given by

∂V

∂ρ
= V0[δ(ρ−R1)− δ(ρ−R2)]. (2.41’)

As the eigenfunctions
◦
ϕv of Ĥ0 vanish at ρ = R1,2, the 2nd

term on the r.h.s. of (2.41) does not contribute. Simple
algebra leads to the expression

〈
◦
ϕν |Ĥ1|

◦
ϕµ〉=

δ

6

(
2Mδ

~2

)
(
◦
eν−

◦
eµ)2〈

◦
ϕν |ρ

2P2(cosθ)|
◦
ϕµ〉.

(2.42)

The matrix elements of ρ2 where evaluated numerically,
while the matrix elements of spherical harmonics are ex-
pressed in terms of Clebsch-Gordan coefficients.

3 Results

It is useful to consider first the results obtained within
the pure liquid drop (LD) model separately because they
present the average trends as a function of the net charge
number q and the number n of atoms.

In Figures 1 and 2 we show the dimensionless energy F
as a function of the dimensionless inner radius v2 = R2/R0
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Fig. 3. Energy difference F between the bubble solution and
the compact sphere as a function of the fissility parameter X0

(Eq. (2.25)).

for different values of the fissility parameter X0. Further-
more, in Figure 1, we exhibit the solution X0(v2) or equa-
tion (2.28’) which for any given value X0 > 3.379 yields
two real values of v2, where F is stationary. The larger
one corresponds to the bubble solution and the smaller
one to the potential barrier which is located between the
solutions pertaining to the compact sphere (v2 = 0) and
to the bubble. In particular, inspection of the solution
X0(v2) of equation (2.28’) tells us that whenever a bubble
solution exists, there is always a barrier which separates
it from the compact sphere solution. The maximal barrier
height is given by F = 0.037. In a tiny range of fissility
parameters (3.379 < X0 ≤ 3.72), the energy of the bubble
solution turns out to be higher than the energy of the com-
pact sphere. With increasing X0 the energy of the bubble
solution decreases. In Figure 3, we show the energy differ-
ence F of the bubble solution compared to the compact
sphere as a function of the fissility parameter X0.

In order to obtain the energy F in ordinary units one
has to multiply F with 2 times the surface energy ES of
the compact sphere:

2ES = 8πσ
◦
r

2

s n
2/3 =

{
3, 25 eV × n2/3 for 23Na

1, 23 eV × n2/3 for 133Cs.

At fissility X0 = 4 and for cluster sizes of n = 100 and n =
1000 we obtain the following gains in binding energy due
to forming a bubble instead of a compact sphere: |F |2ES
= 2.8 eV and 13 eV, resp., for 23Na
|F |2Es = 1.05 eV and 4.92 eV, resp., for 133Cs.

Unfortunately, the charges necessary for obtaining bubble
solutions are quite high. This can be checked by noticing
that X0 can be written in the form

X0 =
(q2/n)

(q2/n)c
, (3.1)

where

(q2/n)c :=
16πσ

◦
r

3

s

e2
0

=

{
0.934 for Na

0.509 for Cs.
(3.2)

For a system with fissility parameter X0 = 4, this implies
the following values of q2/n for the two metals Na and Cs:(

q2

n

)
X0=4

=

{
3.74 for Na

2.04 for Cs.
(3.3)

We must keep in mind that these results obtained within
a simple LD model only indicate the average trends. Sub-
stantial changes are produced by the shell structure when-
ever the number (n − q) of free electrons corresponds to
a shell closure for the bubble-shaped nucleus. In this case,
the shell effect may favour the spherical bubble versus the
compact sphere already at smaller net charges of the clus-
ter. In addition, the shell effect is of crucial importance for
stabilizing the spherical charged metal bubbles against fis-
sion. This will be investigated later.

We performed calculations for metallic agglomerates
of sodium (23Na) and of Cesium (133Cs). The following
empirical values of the LD-parameters [21,28] were used:

23Na:
◦
rs = 2.07 Å; τ = 0.03017 eV Å−3;

σ = 0.01894 eV Å−2

133Cs :
◦
rs = 2.98 Å; τ = 0.00722 eV Å−3;

σ = 0.00550 eV Å−2

The LDM results for the binding energy (ELD, Eq. (2.14)),
the energy gain (∆ELD, Eq. (2.21’)) by bubble formation,
the fissility parameterX (Eq. (2.24)) and the hole fraction
(Eq. (2.4)) for the bubble solution are shown as a func-
tion of the number n of atoms in the cluster in Figure 4
for Na and in Figure 5 for Cs. Different curves correspond
to different numbers q of the net (positive) charge of the
cluster. It is seen that only for quite massive and highly
charged clusters the bubble configuration has a lower en-
ergy than the compact sphere. The hole fraction f varies
from 0.3 to 0.9, the hole being the larger, the greater the
net charge q for given number n of atoms.

In all cases of LD-bubble solutions, the fissility param-
eter X of the bubble (Eq. (2.24)) turns out to be larger
than 1. This implies that within the LD model there is
no fission barrier on the way from the spherical bubble to
fission. Only the shell energy may lead to a stabilization of
the spherical bubble solution against fission in very much
the same way as this has been shown to be the case for nu-
clear bubbles [23]. The scheme of electronic levels which
is obtained for the infinite square well potential (2.12),
is shown in Figure 6 as a function of the hole fraction f
(Eq. (2.4)). The infinite square well has the advantage that
its eigenvalues scale with n−2/3. Therefore, with the en-
ergy unit used in Figure 6, the level scheme is universally

valid for all cluster sizes n except for the 1/
◦
r

2

s dependence
of the levels on the value of the Wigner-Seitz parameter
◦
rs. In the plot of Figure 6, we chose the radius parameter
of Cs.

We draw the attention of the reader to the fact that the
levels with node number n > 1 rise much more steeply as
a function of increasing hole parameter f than the levels
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with node number n = 1. The physical reason of this phe-
nomenon is that for s.p. states which exhibit one or several
radial nodes within the metallic layer, the kinetic energy
increases much more with decreasing thickness of the layer
than for s.p. states without such a radial node. This is
a general feature of the level scheme of a bubble-shaped
potential. It occurs in a similar way if we use a harmonic
oscillator instead of a square well [23].

Within the group of levels with given node number
n, the only other quantum number entering the single
particle energies is the orbital angular momentum l with
a degeneracy factor of 2(2l + 1). The gaps between shells
of neighbouring l values become larger with increasing
l value. For a purely metallic bubble and the choice of
the simple square well potential, the magic numbers are
given by

l0∑
l=0

2(2l + 1) = 2(l0 + 1)2,

where l0 is the largest orbital angular momentum still oc-
cupied. For compact spherical cluster the number of ra-
dial nodes does not play any special role. Therefore, for
compact spheres the shell closures are determined by the
principal quantum number.
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Fig. 7. Shell correction energy for the Cs bubble cluster with
the hole fraction f = 0.5 as a function of n− q.
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Fig. 8. Shell energy for a (neutral) Cs-coated fullerene
C60Cs(n) as a function of the number n of free electrons resid-
ing in the metallic layer.

We note that the orbital angular momenta l0 for the
topmost electrons are large. So, for a bubble-shaped clus-
ter of 242 free electrons, the topmost angular momentum
is l0 = 10 with a degeneracy of 42.

In principle there will also be shell closures for states
with higher radial node number. However, they occur at
smaller values of the hole parameter f (see Fig. 6), where
the LD energy does not yet contribute enough energy gain.
If we were to plot the LD-energy difference F of Figures 1
and 2 as a function of f rather than v2, the bubble valleys
would occur for f -values in the range 0.4 ≤ f ≤ 0.7. The
shell energy (2.16) is plotted as a function of the number
n− q of free electrons in Figure 7. The plot is for Cs and
for the value f = 0.5 of the hole parameter. For Na and
other metals the corresponding plot looks very similar.
The minima of the shell energy for spherical bubbles occur
at the magic numbers

Mbubble = 2, 8, 18, 32, 50, 72, 98, 128, 162, 200, 242,

288, 338, 392, 450, 512, 578, 648, 722, . . .
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which differ from the magic numbers obtained for compact
spherical cluster [29]

Mcomp = 2, 8, 20, 34, 50, 92, 138, 190, 254, 338, 438,

546, 676, 832.

The shell energies for the magic numbers 450, 512, ..., 800
are seen to be of the order of −0.5 eV in Figure 7. For Na,
the picture would look very similarly. We chose Na as one
example clusters because a lot of experimental work ex-
ist on sodium cluster (see for instance Refs. [17–19]). The
choice of Cs as 2nd example was motivated by the fact that
recent experiments on Cs-coated fullerenes [24,25] demon-
strated the existence of shell effects due to the conduc-
tion electrons in the metal layer for large enough numbers
of Cs-atoms. The shell correction energy corresponding
to the conduction electrons of the metallic layer on top
of the C60-fullerene were calculated recently by Spring-
borg et al. [25]. This calculation is close to our work. In
the case of the metal-coated fullerene, the metallic bubble
is stabilized by the fullerene. Consequently, metal-coated
fullerenes are expected to exist for a wide range of num-
bers n of metal atoms and a variety of metals. Shell effects
can thus be studied by looking at the abundance distribu-
tion, as usual. The authors of reference [25] used a more
sophisticated shell model potential than we do, which is
obtained from a density functional approach.

In Figure 8 we present the results of our calculation
of the shell energy in an uncharged layer of Cs-atoms on
top of a C60-fullerene. It is shown as a function of the
number n of Cs atoms in the layer. The minima of the
shell energy are seen to occur at values of n which dif-
fer from the magic numbers which we obtained for the
purely metallic bubbles. This is due to the fact that for
the metal-coated fullerene the inner radius R2 is fixed by
the fullerene (R2 = 3.57 Å), whereas the outer radius R1

changes as a function of the number of Cs atoms. Conse-
quently, the hole parameter f is a function of n in Figure 8,
whereas it is kept constant in Figure 7.

If one compares the magic numbers obtained in Fig-
ure 8 with the dips in the experimental photo-ionization
spectra of C60Cs(n) clusters [25] one should keep in mind
that the metallic Cs layer is expected to donate a limited
number of free electrons to the fullerene. The authors of
reference [25] assumed this number to be 6. If we adopt
this hypothesis, then the number of Cs-ions in the metal
layer for given magic numbers n(mag) of free electrons in
the layer is (n(mag)+6). These ion numbers must be com-
pared with the experimental ion numbers N(dip) given
in reference [25], where dips in the photo-ionization mass
spectra of C60Cs(N) were observed.

The experimental numbers N(dip) are [25]

N(dip) = 12± 0, 27± 1, 33± 1, 44± 1, 61± 1, 98± 1,

146± 2, 198± 0, 255± 5, 352± 10, 445± 10,

whereas our results corrected for the 6 donated electrons
are (see Fig. 8)

n(mag) + 6 = 14, 24, 38, 58, 86, 96, 136, 186, 192, 258,

336, 434.

The agreement is not good, but at higher mass numbers,
where the jellium model is more reliable, there is unde-
niably a clear correspondence between the experimental
and theoretical values. The calculated magic numbers in
the more sophisticated model of reference [25] are closer
to experiment than ours, but there are also discrepancies.

The main purpose our work is, however, not to con-
tribute to the understanding of shell effects in metal-
coated fullerenes but to establish the claim that purely
metallic aggregates carrying a sufficiently high charge are
more strongly bound in the form of bubbles rather than
of compact spheres and are protected against fission by
a fission barrier which owes its existence to the shell effect
for the spherical bubble.

This claim is corroborated by the results of Figure 9
for a cluster of 482 Cs ions, carrying altogether 32 positive
charges. The shell effect for the deformed bubble was cal-
culated on the basis of the scaling model presented in Sec-
tion 2. In Figure 9a we show the LD-energy for spherical
bubbles as a function of the hole parameter f . The min-
imum is seen to correspond to the value f = 0.45. The
spherical bubble corresponding to f = 0.45 is then de-
formed into axially symmetric spheroids described by the
deformation parameter δ introduced by equation (2.34).
The LD-energy ELD is seen to decrease as a function of
δ (see Fig. 9b), whereas the shell energy Eshell, which is
negative (∼ −0.6 eV) at sphericity, rises as a function of
δ and passes a slightly positive maximum at δ ≈ 0.2 (see
Fig. 9c). The total energy Etot as a function of δ is shown
in Figure 9d. It exhibits a barrier of about 0.7 eV height
at a spheroidal deformation of δ ≈ 0.2. This is a small
barrier height, which limits the tolerable temperatures to
a couple of thousand ◦K. The decay by tunneling can be
discarded because the inertia of the cluster is very large.
The results for Na look similar. There are probably other
metals which are more adapted to the formation of bub-
bles than the two cases we studied.

Which criteria of selecting a metal should be looked
for?

Since the bubble formation requires a fissility param-
eter X0 > 3.3279, at least as far as the LD model is con-
cerned, one should look for systems with a small param-
eter (q2/n)c (see Eq. (3.2)), which implies systems with
a small surface tension σ and a small specific the volume

v0 = 4π/3
◦
rs (or large density). The smaller the param-

eter (q2/n)c, the smaller is the value of (q2/n) which is
necessary to achieve a given fissility X0 > 3.379.

Experimentally, to the best of our knowledge, the high-
est net cluster charges that have so far been reached are
about q = 5. In any case, a charge of about 24 for a clus-
ter size of about 300, as would be needed for producing Cs
bubbles, is probably beyond the present experimental pos-
sibilities. Therefore, metals with smaller values of (q/n)c
should be looked for.

On the other hand, developing experimental tech-
niques so as to produce high cluster charges and at the
same time larger cluster sizes would also be of great inter-
est concerning the competition between decay by evapo-
ration, by asymmetric, and by symmetric fission [30].
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Fig. 9. LD energy of Cs+32
482 as a function of the hole parameter f (a) and of the deformation δ (b). Figures (c) and (d) represent

the shell energy (Eq. (2.16)) and the total energy (Eq. (2.13)) as a function of δ.

4 Summary and discussion

We investigated whether charged metallic clusters may,
under certain conditions, find a state of lower energy by
forming a spherical bubble rather than a compact sphere.
We treated the problem within the simplest possible ap-
proximation, i.e. jellium model plus a phenomenological
shell correction.

As far as the LD-part of the energy is concerned, it
could be demonstrated that bubble formation can only oc-
cur if the fissility parameter X0 > 3.379. Furthermore, we
showed that the shell energy which is obtained for magic
numbers of conduction electrons in the bubble-shaped av-
erage potential, produces a fission barrier the height of
which is of the order of the shell energy for the magic
bubble. This barrier protects the bubble from undergoing
a (rapid) fission process.

These results were obtained for the example of Cs. For
this metal, the number n of Cs atoms and the net charge q
necessary for favoring the bubble are quite large (n ≥ 300,
q ≥ 24). It is probably possible to find other metals, where
the conditions can be met more easily. We discussed the
criteria for such a search at the end of Section 3.

We did not investigate the importance of decay chan-
nels other than symmetric fission, i.e. the emission of neu-
tral or weakly charged atoms or molecules. The emission of
light charged clusters can be considered as a case of very
asymmetric fission. This asymmetric fission surely com-
petes with symmetric fission. We note that symmetric fis-
sion is expected to be the preponderant decay channel for
highly charged clusters [30]. Checking this theoretical pre-

diction is another reason why it is of great interest to de-
velop experimental techniques to produce highly charged
clusters.
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